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GOTO Removal Based On Regular Expressions

We present an algorithm for eliminating GOTOs and replacing them with structured if-then-else
and loop constructs. Previous approaches have treated GOTO removal as an isolated problem for
programming languages. In this paper, we describe a way of reducing GOTO removal to the
well-understood problem of converting a finite-state transition network to a regular expression. A
semantics is provided showing the regular expression form may be interpreted as a nondeter-
ministic program. A set of pattern-based reduction rules is used to transform the regular expres-
sion form back to a conventional structured program. Besides achieving greater conceptual unity,
the method leads to a simpler algorithm where the task of recognizing loop boundaries is sepa-
rated from that of identifying loop exits. We have successfully applied the algorithm in systems
for reengineering COBOL/IMS database systems and assembly language code.
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Introduction and Related Work

Several decades ago, the use of the GOTO statement was a matter of considerable controversy
(Dijkstra, 1968). Several papers (Ashcroft et al., 1972, Peterson et al., 1973, Ramshaw, 1988)
analyzed GOTOs and proposed algorithms for removing them. In general, the motivation was not
so much to retroactively improve existing code as to determine what control structures were
needed to render GOTOs unnecessary. Thus, the papers presented conditions for GOTO removal
under various standards of equivalence between the transformed program and the original. For
example, Ashcroft and Manna (Ashcroft et al., 1972) sought to maintain functional equivalence,
requiring unchanged input/output behavior, but allowing the introduction of auxiliary variables
and statements. Peterson et al. (Peterson et al., 1973) were concerned with the higher standard of
path equivalence in which, roughly speaking, the two programs execute the same sequence of
steps. Ramshaw (Ramshaw, 1988) considers an even stronger structural standard where the es-
sential program components map to each other in a one-to-one fashion that respects order.

This phase of work on GOTO removal influenced the subsequent design of programming
languages, and encouraged a more disciplined approach to coding in general. Today, we see
modern languages like Java that include a variety of loop exit mechanisms but lack unstructured
direct control transfer.

Our interest in GOTO removal is motivated by the need to renovate legacy systems. Many
large software systems developed several decades ago are still in use today. These systems were
built using platforms and languages that are increasingly obsolete, and the urgent task exists of
upgrading these legacy computer programs to modern standards. Indeed, the situation is regarded
in some circles as being in crisis (Gibbs, 1996). One option is to completely rewrite these sys-
tems without regard to the existing legacy code. However, this essentially discards the effort that
has gone into requirements analysis, design, and debugging over the years. Often, the fruits of
this labor reside only in the actual code. A perhaps less wasteful alternative is to reverse-engineer
the code to try to extract some or all of this information (Filman, 1996). This may include auto-
matically or manually translating large chunks of code to a more readable high-level form.

Much legacy code is written in assembly, early Fortran, or other low-level languages that do
not contain structured control constructs such as WHILE loops and IF-THEN-ELSEs. Instead
these programs use unstructured GOTOs for control purposes. Moreover, the accumulated detri-
tus of years of patching often has obscured the flow of control. This has led us to consider the
benefit of automatically removing GOTOs in explicating the code. We also had an immediate
practical need for a GOTO removal algorithm. Some of our colleagues have developed software,
based on dataflow analysis, that is used to generate reports on COBOL/IMS database legacy code
for our customers (Polak, 1995). However, the method used requires that the analyzed programs
be free of GOTOs. This requirement was violated by several large Cobol programs that were pre-
sented for analysis. Thus, our GOTO removal program served as a bridge to extend the range of
the software. We have also applied this work to the process of “levitating” IBM 370 assembly
language code to higher-level forms (Morris et al., 1996).

Previous work  (Ashcroft et al., 1972, Peterson et al., 1973, Ramshaw, 1988, Erosa et al.,
1994), while highly developed and abstract in nature, treats GOTO removal as an isolated prob-
lem in the area of programming languages. This paper is based on the observation that GOTO
removal for flowcharts resembles the problem of converting finite-state transition networks to
regular expressions, and presents an approach that unifies these two problems. This unification
leads to a simpler algorithm. For example, other approaches  (Peterson et al., 1973, Ramshaw,
1988) need elaborate machinery for handling overlapping loops, but this is not a difficult issue in
the context of generating regular expressions. The complexity of prior methods appears to be due
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at least in part to the entanglement of the loop recognition task with that of identifying loop exits.
In our approach, the two tasks are effectively separated.

Some of the previous methods (Peterson et al., 1973, Ramshaw, 1988) require that subject
programs satisfy additional conditions such as reducibility in order to achieve the highest
equivalence standard (structural equivalence). Legacy code is in fact almost entirely reducible,
but this can not be guaranteed. Moreover, the structural equivalence standard is inappropriate for
reverse-engineering purposes, since a simplification is often preferred over maintaining the ex-
isting structure. The algorithm presented here is applicable to nonreducible programs, and meets
the lesser path-equivalence standard. Subjectively, this standard appears to produce more read-
able results than approaches that introduce auxiliary variables, such as (Erosa et al., 1994), and is
easier to relate to the source presented for restructuring. These considerations are important for
reverse-engineering.

While the algorithm discussed in this paper has worked well in practical contexts, we feel its
most significant feature is the link to important concepts in computer science, such as finite
automata and nondeterminism, and that is our main focus. It is not our purpose to revisit the con-
troversy over the harmfulness of GOTO statements. Our motivation is to pragmatically improve
legacy code. We also do not claim computational superiority for our algorithm over others in the
literature. It works well in practice, and code is typically reengineered once, not repeatedly. The
system has been used in a commercial context to generate code reports on large-scale systems of
tens of thousands of lines (Polak et al., 1995).

Overview

In this paper, we describe an algorithm for GOTO removal based on the theory of finite automata
(Wulf et al., 1981). It relies on the fact that a finite-state transition network can readily be con-
verted to an equivalent regular expression. Our approach includes translating a computer pro-
gram into a finite-state transition network, and using a set of pattern-match rules to translate a
resulting regular expression back into a structured computer program. This process is illustrated
in Figure 1. The regular expression form may be interpreted as a program, but, in order to do so,
it is necessary to consider nondeterminism. The final stage of the process restores the program to
a conventional form.

Program with
GOTOs

Finite-state
transition
network

Regular
expression

form

Program
without
GOTOs

Figure 1. The GOTO-Removal process

The GOTO-removal system was implemented in Reasoning Systems’ Refine tool (Reason-
ing Systems, 1990). This is a Lisp-based system that provides support for writing parsers to con-
vert a text program into an abstract syntax tree (AST). The nodes in the tree can be decorated
with additional information. Refine also incorporates a rule-system that facilitates pattern-based
transformation of the AST structures.

In the next section, we discuss certain background concepts underlying this approach. In
subsequent sections, we describe the various stages of the GOTO removal process. We then pre-
sent a detailed example of the algorithm in action. In closing remarks, we summarize the results
of this research. In Appendix A, we consider the semantics of the regular expression form, and
the issue of nondeterminism. Finally, in Appendix B, we present several before-and-after exam-
ples of the algorithm’s effect.
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Background

Assembly languages permit jumps to locations that may vary dynamically during execution. Ex-
cept for implementing subroutine returns, use of this feature has generally been considered poor
programming practice and rarely occurs in legacy code. Also, legacy programs in assembly and
Cobol do not generally make use of “long jumps” that pass through subroutine boundaries. (Even
if they do, such jumps can be ignored in a first pass at reverse engineering the code.)  In this pa-
per we will ignore the issue of subroutines and only consider programs with GOTOs that jump to
fixed locations, i.e., the classic GOTO statement.

More precisely, we only consider programs or program segments that can be represented by
means of a control-flow diagram, as illustrated in Figure 2(a). Following Peterson et al. (Peter-
son et al., 1973) and other authors, we transform this into an equivalent flowchart, as seen in
2(b). A flowchart (or flowgraph) is a standard syntactic variant of a control-flow diagram where
the actions and tests are placed on the arcs following the nodes rather than the nodes themselves.
Observe that the arcs of the flowchart are labeled either with tests (negated and unnegated) or
statements of the programs. (We have denoted tests in their negated and unnegated forms by pre-
fixing them with - and +, respectively.)

Peterson et al. recognize that a flowchart closely resembles a finite-state transition network
with a single start and stop node, and use this to define a notion of equivalence for flowcharts in
terms of the potential paths through the network, or, equivalently, in terms of the associated
regular sets. It should be noted that potential here does not necessarily mean possible. For exam-
ple, Peterson et al., state

  

A

B

C

D

Q?

P?
yes

yes

no

no

 

 

A

C

–P

B

D

–Q

+Q

+P

(a) Control-Flow diagram (b) Flowchart

Figure 2. Program Flow Representations



6

Note that if a program has no input data, for example, there is in fact only one
path through the flowchart that can actually occur; but in spite of that, we con-
sider the entire usually infinite set of paths that could occur if all possible com-
binations of test outcomes could occur. ... considering the flowcharts to be tran-
sition graphs, ... two flowcharts are equivalent ... if and only if the associated
regular sets are equal.

Peterson et al. use the associated regular sets merely to define path-equivalence. We take
this a step further. In our approach, flowcharts are identified with the corresponding finite-state
transition networks. These are used to produce regular expressions as an actual intermediate pro-
gram representation. The regular expressions are then converted to GOTO-free code in a more
conventional program form.

Given the essential role that the associated regular sets play in our approach, the use of a
counterfactual (“if all ... combinations ... could occur”) in the Peterson et al. formulation is un-
satisfactory for a formal foundation. For example, it is not a priori obvious that programs that are
path-equivalent must have the same behavior when executed. The problem is that the transition
networks have been introduced as having only a structural relationship to the flowcharts, not a
semantic one. In Appendix A, we introduce a semantics for the associated regular sets that fills
this gap.

Networks To Regular Expressions

From now on, we regard a flowchart as a finite state transition network with a start and stop
node. Recall that a finite state transition network is a representation of a finite automaton. The
nodes in the network correspond to states, and the arcs denote possible transitions between states.
The arcs are labeled with strings over some abstract alphabet that indicate requirements for the
transitions. In the case of a flowchart, the “letters” in the alphabet consist of the conditions and
actions that potentially can occur in the program.

It is straight-forward to convert a finite state transition network with a start and stop node to
a regular expression. Indeed, Manna (Manna, 1974) presents an algorithm for doing this by sys-
tematically eliminating nodes; it thus requires only a linear number of node-removal steps. How-
ever, in general, many different but equivalent regular expressions can be formed from the same
transition network, and Manna's algorithm provides no assurance that the constructed expression
will be a “natural” one, or will not needlessly duplicate subexpressions. Instead of using Manna's
approach, we have implemented an algorithm that forms the regular expression in a natural way
by computing the paths through the network. This may be summarized as a divide-and-conquer
approach that recursively

(1) Computes the elementary nontrivial paths back to the start node.

(2) Computes the paths to the stop node that do not return to the start node.

In (1), the term “elementary” means the start node occurs only at the end-points of the path, and
the term “nontrivial” means the path length is greater than zero.

It is easy to see that any path from the start node to the stop node may be built from paths in
(1) and (2). More precisely, if the regular expression E1 represents the result of (1), and E2 the
result of (2), then E1

*E2 is a regular expression that denotes all the paths through the network.
The first set of paths may be empty, i.e., there may be no nontrivial path back to the start node. In
that case, E1

*E2 reduces to E2. Note that if the second set of paths is empty, the entire expression
reduces to the empty set of paths.



7

In the following, it is convenient to use the term “no-path” to refer to the empty set of paths,
while “empty-path” refers to the trivial path of zero length.

The algorithm uses a node-marking scheme to prevent revisiting the start node at an interior
point of the paths in (1) and (2). The top-level procedure accumulate-unmarked-paths is
designed to compute the regular expression that would result if all transitions from currently
marked nodes were deleted. (Initially, no nodes are marked, but the recursive calls may encoun-
ter marked nodes.)

A simplified version of the procedure may be described in pseudocode as follows:
procedure accumulate-unmarked-paths (start, stop)
if start=stop then
  return empty-path
else if marked? (start) = true then
  return no-path
else
  begin
    marked? (start) <- true;
    ans <- (merge-successor-unmarked-paths (start, start)) *
            merge-successor-unmarked-paths (start, stop);
    marked? (start) <- false;
    return ans;
  end
end procedure

(We remark that, in the implemented system, we actually compute the second call to accumu-
late-unmarked-paths first, since if it evaluates to no-path, there is no need to evaluate the
other call.)

The merge-successor-unmarked-paths procedure forms regular sub-expressions
arising from all the transitions from the start node to its successors, and returns their disjunction.
A pseudocode definition would be messy here; instead, we present examples that makes the be-
havior clear. Suppose the start node has two successors, node1 and node2, reached by transi-
tions labeled with letters A1 and A2, respectively. Then

    merge-successor-unmarked-paths (start, stop)

is given by

    ( A1 accumulate-unmarked-paths (node1, stop)
      | A2 accumulate-unmarked-paths (node2, stop))

In the case of a single successor, node1, with transition label A1, the output would be simply

    A1 accumulate-unmarked-paths (node1, stop)

Note the recursive calls to accumulate-unmarked-paths in each case.
Applying the path algorithm to the flowchart of figure 2(b), we see that the recursive call in

the first case (paths back to the start) produces

    A (B -P C +Q)* B +P

while in the second case (paths forward to the end), it produces

    A (B -P C +Q)* B -P C -Q D

Note that the cycle beginning with B occurs in both subexpressions. Combining the two subex-
pressions yields

    (A (B -P C +Q)* B +P)* A (B -P C +Q)* B -P C -Q D

for the complete path expression. (Extra spacing is used for readability.)
To improve efficiency in the algorithm, we run a preprocessor that collects certain informa-

tion. First, the preprocessor determines the strongly-connected components (Gibbons, 1985) of
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the graph, and thus identifies nodes that are not on cycles. Second, it computes the intervals
(Barrett et al., 1979) of the flowchart. The intervals divide a flowchart into groups of nodes
where each group contains a “leader” that dominates (always precedes in execution) the other
nodes in the group. This enables the preprocessor to identify nodes on cycles that are dominated
by other nodes that begin the cycles. The computation of strongly-connected components, and of
intervals, uses standard algorithms from the literature that are known to run in linear time.

The information computed by the preprocessor is used to support substantial pruning and
caching during the main path-finding process. For example, if the start node is not on a cycle,
then the recursive search back to the start node evaluates to no-path, and can be eliminated.
Somewhat less obviously, even if the start node is on a cycle, we can still eliminate paths back to
it provided it is dominated by some other node that begins the cycle. (The reason for this is that
the dominant node will have been encountered first in the recursive descent, and thus will be
marked. The mark effectively cuts the cycle, since the path-finding process terminates when it
reaches a marked node.)  Furthermore, one can cache the regular subexpressions computed for
start nodes (with respect to the top-level stop node) that are not on cycles, since each subsequent
call with the same start node must return the same value. This avoids the combinatorial explosion
that would otherwise result from a sequence of branch-and-join segments of code.

To avoid needless duplication of subexpressions, the algorithm merges identical tails in
disjunctive branches as much as possible. The merging does not take place as a separate step, but
is integrated into the section of code that constructs the regular expression. Thus, merging is
continuously interleaved with the assembly process. Note that the caching described in the previ-
ous paragraph may produce shared structure, so in many cases the tails that are being merged are
merely different references to the same substructure.

Some duplication in the constructed regular expression is unavoidable. To see this, observe
that the flowcharts of regular expressions are always reducible. A reducible flowchart (Barrett et
al., 1979) is one in which every cycle has only one initial-entry point (where the cycle can be
entered for the first time). If the original program had an irreducible flowchart, the construction
of the regular expression duplicates some subexpressions, eliminating the irreducibility. In this
case, the duplicated subexpressions occur within star expressions that represent the same loop
entered at different points. In general, such star expressions are not identical, and therefore will
not be merged.

In applications of the algorithm to legacy code, duplication due to nonreducibility did not
appear to be a significant issue. However, with one application, we encountered problems due to
duplication for a different reason. Consider the following pseudocode description of a program
involving a particular if-then-else pattern.
      if P then
         A;
         if Q then goto DONE endif;
      endif;
      Z;
DONE: stop;

The GOTO removal algorithm will render this essentially as
      if P then
           A;
           if not Q then Z; end if;
      else
           Z;
      end if;
      stop;

Note that Z is duplicated on both branches of the conditional. Now consider a chain of the form
      if P1 then
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           A1;
           if Q1 then goto DONE endif;
      endif;
      if P2 then
           A2;
           if Q2 then goto DONE endif;
      endif;
        .
        .
        .
DONE: stop;

The GOTO removal algorithm will express this as nested IF-THEN-ELSE statements without
GOTOs. However, the depth of nesting increases with the length of the chain. Since each nested
IF-THEN-ELSE has two branches, the total size of the compound statement grows exponentially
with the chain length.

In an application involving several (~ 10-20) COBOL programs of tens of thousands of lines
each, this difficulty occurred with only one program, and within that program only within two
segments of code. We adopted the expedient of hand-recoding those segments, using auxiliary
Boolean variables to eliminate the duplication. Note that the duplication could also be avoided by
introducing dummy loops that execute only once, as discussed by Peterson et al. (Peterson et al.,
1973), since the GOTOs could be then replaced by loop exits. However, we felt that dummy
loops would constitute obscure or misleading code in this case.

Regular Expressions To Programs

Some additional work is required to convert the regular expression representation into a final
program that uses conventional constructs such as loops. The reason for this is that the star con-
struct in regular expressions denotes only completed cycles in an iteration. The final partial cycle
in which the iteration is exited manifests as a subexpression following the loop.

For example, when the algorithm of the preceding section is applied to a flowchart corre-
sponding to the following pseudocode (it is convenient to use C-like notation here):

while (true) {a; if P then break; b}

the resulting regular expression is (a -P b)* a +P.
Notice that the conditional-test symbol +P occurs in the interior of a sequence. This does

not directly match the format of an if-then-else expression, which corresponds to a pattern such
as (+P... | -P...), as discussed in the appendix. In general, the regular expression represen-
tation can become quite complex, especially when an iteration has several exits. Fortunately, it is
possible to convert the derived regular expression back to a program. The main issue that needs
to be addressed is that the loops have become partially unfolded in the process of converting to a
regular expression because of the final partial cycles. We can undo this damage by refolding the
loop, i.e., matching or aligning the expression following the star operator (called the “sequel”)
against the body of the star operator, while using the cross-matching of opposing tests to identify
the loop exits. For example, when [a†+P]  is matched against [a†-P†b] , this identifies P as
an exit condition in the middle of the loop.

The match process can be described by a set of recursive reductions, which we summarize
here. The reductions are applied in a bottom-up fashion to the regular expression. Thus, inner
star-expressions are eliminated before the outer ones. Furthermore, the earlier rules are applied in
preference to the later ones. Note that the sole purpose of these reduction rules is to eliminate the
star expressions; they are not applicable to ordinary code that does not contain the star operator.
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In the following, <X, Y> indicates that the body X is to be matched or aligned with the se-
quel Y. We use (lp†X)  to denote a loop expression involving repeated execution of X until an
associated exit statement within X is encountered. For rules with pattern +P...-P , the symmetric
rule with -P...+P  is understood.
%%% Initial Reduction
 (X)* Y                 → (lp <X, Y>)

In the remaining reductions, the < , >  expressions are understood to be surrounded by the cur-
rent enclosing lp  expression that was introduced by the initial reduction. The exits generated by
the reductions are with respect to this current enclosing loop, and are labeled as such in the im-
plemented system. However, for simplicity we have suppressed the labeling in the reductions
below.
%%% Basic reduction
 <ZX, ZY>               → Z <X, Y>

%%% Terminal reductions
 <X, X>                 → X
 <+PX, -PY>             → (+PX | -PY exit)

Before continuing, we see how these apply to our simple test-case. We have

(a -P b)* a +P → (lp <a -P b, a +P>)
               → (lp a <-P b, +P>)
               → (lp a (-P b | +P exit)).

The last expression can be rewritten in C-like pseudocode as
while(true) {a; if (!P) b else break;}

which is equivalent to the original program.
The remaining reductions deal with more complex matches involving conditionals and

loops.
%%% Reductions for disjunctions (bars) and loops without following-code.
 <(+PX | -PY), -PZ>           → (+PX | -P <Y, Z>)        ; left bar
 <+PX, (+PY | -PZ)>           → (+P <X,Y> | -PZ exit)    ; right bar
 <(+PX | -PY), (+PZ | -PW)>   → (+P <X,Z> | -P <Y,W>)    ; double bar

 <(lp X), (lp Y)>             → (lp <X,Y>)               ; inner loop

%%% Eliminate following-code for bars and loops by distributing inside,
 <(+PX | -PY) U, Z>           → <(+PXU | -PYU), Z>
 <X, (+PY | -PZ) U>           → <X, (+PYU | -PZU)>
 <(lp X) U, Y>                → <(lp cover-exits(X,U)), Y>
 <X, (lp Y) U>                → <X, (lp cover-exits(Y,U))>

The cover-exits(Y,U)  function places a copy of U at each exit point within Y. (Thus, the
following-code is distributed to each exit.)

For the purpose of constructing flowcharts, we may regard an <X, Y>  expression as
equivalent to (X | Y exit) , although it has an additional computational connotation in terms
of focus of attention with respect to the rules. Using this equivalence, and considering the reduc-
tions in terms of their effect on the corresponding flowcharts, it is easy to verify that they pre-
serve path-equivalence. Notice that the distribution rules generally duplicate nodes in the flow-
chart, and the other reductions (apart from the initial one) have the effect of merging equivalent
nodes. Actually, the purpose of the distribution rules is simply to facilitate application of the
merging rules. Notice that when a distribution rule is used, no further distribution rules are appli-
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cable until at least one merging rule follows. Although, for purposes of modularity, we have
listed the distribution rules and the bar/loop merging rules separately above, the computational
effect is essentially the same as if they were combined to form more general reductions as fol-
lows:
%%% Reductions for disjunctions (bars) and loops.
<(+PX | -PY) U, -PZ>           → (+PXU | -P <YU, Z>)       ; left bar
<+PX, (+PY | -PZ) U>           → (+P <X,YU> | -PZU exit)   ; right bar
<(+PX | -PY) U, (+PZ | -PW) V> → (+P <XU,ZV> | -P <YU,WV>) ; double bar
<(lp X) U, (lp Y) V>           → (lp <cover-exits(X,U),
                                         cover-exits(Y,V)>) ; inner loop

Expressed in this form, it is intuitively clear that the reductions eventually terminate, since each
step after the initial reduction strictly reduces the scope of the <X, Y> expressions. This is pre-
sented more formally in the following theorem.

Theorem 1 The reduction rules terminate after a finite number of applications.

Proof: We will associate a non-negative integer, called the reduction length, with each <X, Y>
expression. For definitional convenience, the reduction length of e, denoted RL(e), is defined for
e ranging over the whole class of expressions formed from “letters” using the concatenation,
disjunction, <.,.> and lp operators. (These are the expressions to which the reduction rules
are applied.)

We can define RL inductively by the following set of equations.

RL (<X, Y>) = max(RL (X), 2 + RL (Y)) (1)
RL ((X | Y)) = max(RL (X), RL (Y)) (2)
RL ((lp X)) = 1 + RL (X) (3)
RL (XY) = RL (X) + RL (Y) (4)
RL (X) = 1, if X is a “letter” (5)

We now restrict attention to the reduction lengths of only the <X, Y> expressions. It can be
verified that each of the reduction rules (after the initial one) results in <X, Y> expressions
(generally one, but possibly two) with strictly lower reduction length than the one to which the
rule was applied. It follows that the reduction process must terminate, since no expression can
have a negative reduction length. Q.E.D.

Since a reduction step may produce two daughter <X, Y> expressions, the total number of
reduction steps is bounded by 2r, where r is the reduction length. In practice, it will be much less
than this upper bound, since the double bar reduction is the only one that results in two daughter
<X, Y> expressions. Furthermore, as mentioned earlier, the earlier reduction rules are applied
in preference to the later ones. Thus, for example, <(+PX | -PY) U, (+PX | -PY) V>
will be reduced to (+PX | -PY) <U, V> via the basic reduction rule, rather than using dis-
tributivity and double bar. We did not encounter significant problems in practice due to the dou-
ble bar reduction.

The question arises whether the given reductions are adequate for refolding the loops, and
restoring the regular expression programs to a conventional form. It seems reasonable to conjec-
ture that this is so, since the reductions are merely undoing duplications that occurred during the
construction of the star expressions. Nevertheless, this is still an open question. It may be noted
that the reductions appear to cover all the merging situations that can arise within the expression
language. Furthermore, experiments involving a judiciously chosen suite of examples confirm in
all cases that the output of these reductions is an expression where the <X, Y> expressions have
been eliminated, and conditionals only occur as in the pattern (+P... | -P...). (Real-world
tests involving naturally occurring programs of tens of thousands of lines, carried out under less
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controlled circumstances, also appear to confirm this.)  This is easily converted into a program-
like form that combines primitives of the source language using high-level if-then-else and loop
constructs. Note that, as pointed out by Peterson et al., the loop construct needs to (and does)
allow multilevel exits.

After the reductions are complete, further simplification rules are applied. We only use sim-
plification rules that clearly preserve path-equivalence. For example, one can “factor out” tail
code that is common to all exits of a loop, and place it after the loop. Thus, (lp (+PX | -PY
exit)) becomes (lp†(+PX†|†-P†exit))Y . (Notice that this has an opposite effect to the
distribution rules. However, there is no danger of conflict, since the simplifications are delayed
until after the reductions are complete.)

In a typical translation task, further work may be required to translate the “letters” of the
language (i.e., simple statements and tests), and to express the high-level constructs in the syntax
of the destination language. For example, if the destination language does not allow multilevel
exits, these may need to be simulated or finessed by such devices as introducing auxiliary vari-
ables, partially unrolling loops, or employing other idioms commonly used for that purpose in the
destination language.

An Example

We illustrate the method with an example. Consider the following program fragment, where A, B,
C, and D stand for arbitrary statements, and P and Q are arbitrary tests.
   L:    A;
   M:    B;
         if P then GOTO L;
         C;
         if Q then GOTO M;
         D;

Note that the statement “if Q then GOTO M” branches back into the middle of a previous
loop. This kind of configuration (overlapping loops) is difficult to translate by hand. The flow-
chart for this program is the one presented in Figure 2.

As discussed in Section 4, the regular expression form for this program is
(A (B -P C +Q)* B +P)*    A (B -P C +Q)*   B -P C -Q    D

The first part of the expression shows that there are two loops, with one nested inside the other.
Note that there is a “reflection” of the inner loop in the expression following the outer loop. This
represents the reprise of the inner loop that occurs during the final partial cycle in which the
outer loop is exited.

If we first completely reduce the inner loop star-expressions, we get
(A (lp B (-P | +P exit-inner) C +Q))*
 A (lp B -P C (+Q | -Q exit-inner))
D

Applying several reductions to the outer loop then leads to
(lp A (lp B
            <(-P C +Q | +P exit-inner), -P C (+Q | -Q exit-inner)>
))
D

which further reduces to
(lp A (lp B  (-P C
                   <+Q, (+Q | -Q exit-inner)>
                                              | +P exit-inner)
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))
D

and finally to
(lp A (lp B (-P C (+Q | -Q exit-inner exit-outer) | +P exit-inner)
))
D

which is equivalent to the following program.
outer: loop
           A;
inner:     loop
               B;
               exit inner loop when P;
               C;
               exit outer loop when not Q;
           end loop;
       end loop;
       D;

Closing Remarks

We have presented a method for restructuring programs by eliminating GOTOs in favor of loops
and if-statements. In contrast to previous direct methods, which treat GOTO removal as an iso-
lated problem for programming languages, our technique uses the well-understood relationship
between finite state transition networks and regular expressions. This is justified by a linguis-
tic/transformational approach to program semantics (in Appendix A below) that associates trans-
formations from states to sets of states with sets of strings over an alphabet of elementary opera-
tions.

The approach has been tested on a suite of examples involving various kinds of loops and
jumps, including the example of Ashcroft and Manna (Ashcroft et al., 1972), as well as a pro-
gram with an irreducible flowchart. It has also been successfully applied to the removal of
GOTOs in reverse-engineering IBM assembler (Morris et al., 1996), and commercially to help
generate code reports for COBOL programs of several tens-of-thousands-of-lines (Polak et al.,
1995).

We conclude that GOTO removal can be successfully reduced to the problem of converting
a finite-state transition network to a regular expression, leading to greater conceptual unity. The
resulting algorithm is also simpler because the task of recognizing and determining the nesting of
loops is disentangled from the task of identifying loop exits. It is gratifying that the algorithm
also appears to work well in practical applications.

This work was motivated by a specific need in coping with the reengineering of legacy sys-
tems. However, the linguistic/transformational approach to program semantics may have other
applications. For example, it could provide the basis of a program algebra for manipulating
code. It may also provide a bridge between rule based formalisms that are related to finite-state
machines and the more conventional forms that occur in programming languages.

Appendix A. Flowcharts and Regular Sets

In this appendix we discuss foundational issues concerning the semantics of the path-derived
regular expressions and their relationship to programs. The semantic approach presented here is
different from, and simpler than, the standard continuation-based one (Winskel, 1993) that is
popular among theoreticians. However, it is well-suited for our purposes.
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One might conjecture that the regular set associated with a flowchart in the Peterson et al.
formulation (Peterson et al., 1973) corresponds to the set of execution traces. Unfortunately, that
is not the case.

To illustrate the difficulty, consider the following code fragment where the variable N has
integer type.
    for i from 1 to 2*N
        do print ’hi’;

The flowchart for this fragment is shown in Figure 3.

i ← 1

i  > 2 * N

print ‘hi’

i  ≤ 2 * N

i ← i + 1

Figure 3. Even number of cycles.

Following the approach of Peterson et al., we can derive a regular expression corresponding
to the paths through the flowchart. Assume an alphabet whose “letters” are the primitive state-
ments, and test expressions, that occur in the program. Then the associated regular expression is

i ← 1 ( i ≤ 2 * N print ’hi’ i ← i + 1 )* i > 2 * N

where we have indicated the statements and tests that are to be regarded as “letters” by enclosing
them in boxes.

Recall that the star operator in a regular expression denotes an arbitrary number of repeti-
tions. However, since 2*N is even, in any real execution of the loop the number of repetitions
would necessarily be even. Thus, the precise semantic status of the star operator in the above ex-
pression is unclear. In the following paragraphs, we outline a more rigorous treatment of the se-
mantics of such regular expressions in relationship to programs. The basic idea is that the expres-
sion is regarded as an algebraic combination of transformations that together determine the total
effect of the program.
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In this approach, we represent the semantics of a flowchart program (or program fragment)
as an operator, or mapping, over states of the world. For technical reasons (specifically, in order
to fit both statements and tests into a uniform framework), we consider mappings that transform
states into sets of states. These may be thought of as nondeterministic programs. (A deterministic
program is then a special case, where the image of each domain element is a singleton set.)

We begin by representing the semantics of the individual “letters,” that is, the elementary
statements and tests that occur as labels in the flowchart. This approach does not depend on the
details of any particular programming language. We assume only that the execution of a state-
ment alters the computer or the world in some unspecified way, and that the evaluation of an
elementary test is without side-effects. (The latter assumption is non-essential and could be re-
laxed by a slightly more complicated treatment.)

Given the above, we assume a set of states, left unspecified, that represents the possible
states of the world. A statement A is then associated with a mapping f such that f(s) = { s'}, where
s’ is the state of the world that results if A is executed when the world is in state s. A test +P
(resp., -P) corresponds to a mapping f such that

f (s) =
{s} if P is true (resp.,  false) in s

∅ otherwise
 
 
 

(1)

We distinguish two special mappings. The first, called nop (for “no-operation”), is the
mapping associated with the test true that holds in every state. Thus, nop(s) = {s} for all s. The
second, called fail, is the mapping associated with the test false that does not hold in any
state. That is, fail(s) = ∅ for all s.

Next we extend the semantics to apply to strings or words formed from the “letters.”  We let
Mw denote the mapping associated with a letter or string w. If S is a set of states, we write Mw (S)

to mean ∪s∈ S Mw (s). As usual, Λ denotes the empty string. Then the mapping associated with a
string is defined inductively by MΛ= nop and

M s M M swc c w( ) ( ( ))= (2)

where c is a letter and w is a string. Intuitively, the semantics associated with a string is that of of
applying the component “letter” transformations in left-to-right order. Note that it follows from
the above definition that if u and v are any strings, then

M s M M suv v u( ) ( ( ))= (3)

Now we extend the semantics to sets of strings. The mapping MW associated with a set of
strings W is defined by

M s M sW
w W

w( ) ( )=
∈
U (4)

Note that it follows that M∅= fail. Intuitively, the semantics associated with a set of strings is
that of treating the individual strings as nondeterministic alternatives. (This is somewhat similar
to the situation with a set of clauses in the nondeterministic language Prolog, except in Prolog the
order of the clauses is significant.)

We can further extend the semantics to formalisms such as finite-state transition networks
and regular expressions that specify sets of strings, assuming an alphabet of elementary state-
ments and tests. Thus, the semantics of regular expressions such as (E1 | E2) or E* is interpreted
in terms of the semantics of the specified regular sets. This implies that (E1 | E2) combines E1 and
E2 as nondeterministic alternatives, while E* corresponds to the infinite family of alternatives (Λ
| E | EE | ...).
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Finally, the identification of flowchart programs with finite-state transition networks ex-
tends the semantics to ordinary program constructs that can be expressed by flowcharts. For ex-
ample, “if Test then Action1 else Action2” translates as

(+Test Action1 | -Test Action2).

Similarly, “while Test do Action” becomes
(+Test Action)* -Test

These appear to be reasonable renderings of the intuitive semantics.
In light of the above, the regular set associated with a flowchart is seen not as a set of possi-

ble traces, but as something quite similar: a set of straightline programs that are alternatives in a
nondeterministic sense.

Consider once again the expression

i ← 1 ( i ≤ 2 * N print ’hi’ i ← i + 1 )* i > 2 * N

where N is of type integer. The set of strings denoted by this does indeed include strings where
the repetition occurs an odd number of times. However, these represent “null” mappings, i.e.,
mappings that transform every state to the empty set of states. Thus, they contribute nothing to
the combined mapping. Intuitively, they are nondeterministic alternatives that fail.

Appendix B. Sample Programs

Note: The input and output format in these samples has been edited for readability, but the
structure is as produced by the implemented system.

Before GOTO removal After GOTO removal

Program1: Contains inaccessible code
  <<lb1>>:                           loop
    DISPLAY("READY");                    DISPLAY ( "READY");
  <<lb2>>:                               DISPLAY ( INPUTGANGMSG);
    DISPLAY(InputGangMsg);               ACCEPT ( MASSGANG, CARDREADER);
  <<lb3>>:                               if VALIDGANG then exit endif;
    ACCEPT(MassGang, CardReader);        DISPLAY ( "INVALID GANG")
  <<lb4>>:                           endloop
    goto <<lb6>> if ValidGang;
    DISPLAY("INVALID GANG");
    goto <<lb1>>;
    goto <<lb7>>;
  <<lb6>>:
    goto <<lb5>>;
  <<lb7>>:
  <<lb5>>

Program2: Tests in middle of loops. i.j reach n.
    set sum = 0;                  set SUM = 0;
    set i = 1;                    set I = 1;
  <<lp1>>:                        loop1
    set j = 1;                       set J = 1;
  <<lp2>>:                           loop2
    set sum = (sum + c(i,j));           set SUM = (SUM +  C ( I, J));
    goto <<out2>> if (j == n);          if (J = N) then exitloop2 endif;
    set j = (j + 1);                    set J = (J +  1);
    goto <<lp2>>;                    endloop2
  <<out2>>:                          if (I = N) then exitloop1 endif;
    goto <<out1>> if (i == n);       set I = (I +  1);
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    set i = (i + 1);              endloop1
    goto <<lp1>>;                 print (SUM);
  <<out1>>:
    print(sum)

Program3: Multilevel exit when c = 0.
    set sum = 0;               set SUM = 0;
    set i = 1;                 set I = 1;
  <<lp1>>:                     loop1
    set j = 1;                    set J = 1;
  <<lp2>>:                        loop2
    set c = c(i,j);                 set C = C ( I, J);
    goto <<out1>> if (c == 0);      if (C == 0) then exitloop1 endif;
    set sum = (sum + c);            set SUM = (SUM +  C);
    set j = (j + 1);                set J = (J +  1);
    goto <<lp2>> if (j <= n);       if not(J <= N) then exitloop2 endif;
    set i = (i + 1);              endloop2
    goto <<lp1>> if (i <= n);     set I = (I +  1);
  <<out1>>:                       if not (I <= N) then exitloop1 endif;
    print(sum)                 endloop1
                               print (SUM);

Program4: Ashcroft and Manna program
    A ();                     A ();
  <<lp1>>:                    loop1
    goto <<s1>> if P;            if not P then
    goto <<s2>> if Q;               if not Q then
    G ();                              G ();
    goto <<finish>>;                   exitloop1
  <<s2>>:                           else
    B ();                              B ();
  <<lp2>>:                             loop2
    goto <<s3>> if R;                     if not R then exitloop2 endif;
    goto <<s4>> if S;                     D ()
    F ();                              endloop2;
    goto <<finish>>;                   if S then
  <<s1>>:                                 C ()
    E ();                              else
    goto <<lp1>>;                         F ();
  <<s3>>:                                 exitloop1
    D ();                              endif
    goto <<lp2>>;                   endif
  <<s4>>:                        else
    C ();                           E ()
    goto <<lp1>>;                endif
  <<finish>>:                 endloop1
    halt ()                   HALT ()

Program5: Program with an irreducible flowgraph
    goto <<e1>> if "red-first";   if "red-first" then
    goto <<e2>>;                      loop
  <<lp>>:                                 PRINT ( "red");
    goto <<finish>> if "i=0";             PRINT ( "green");
  <<e1>>:                                 EXECUTE ( "i--");
    print("red");                         if "i=0" then exit endif
  <<e2>>:                             endloop
    print("green");               else
    execute("i--");                   loop
    goto <<lp>>;                          PRINT ( "green");
  <<finish>>:                             EXECUTE ( "i--");
    execute("halt")                       if "i=0" then exit endif;
                                          PRINT ( "red")
                                      endloop
                                  endif;
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                                  EXECUTE ( "halt")
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